Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Controlling the diameter of silicon nanowires grown using a tin catalyst

Identifieur interne : 001000 ( Main/Repository ); précédent : 000F99; suivant : 001001

Controlling the diameter of silicon nanowires grown using a tin catalyst

Auteurs : RBID : Pascal:13-0080026

Descripteurs français

English descriptors

Abstract

Silicon nanowires were grown on ITO-coated glass substrates via a pulsed plasma enhanced chemical vapor deposition method, using tin as a catalyst. The thin films of catalyst, with different thicknesses in the range 10-100 nm, were deposited on the substrates by a thermal evaporation method. The effect of the thickness of the thin film catalyst on the morphology of the silicon nanowires was investigated. The scanning/ transmission electron microscopy images showed that the wire diameter increased as the thickness of the thin film catalyst increased. The nanowires grown using a thin film thickness of 10 nm were inhomogeneous in diameter, whereas the other thicknesses led to an increase in the homogeneity of the diameters of the nanowires. The dominant wire diameter of the grown silicon nanowires ranged from 70 to 80 nm with 10 nm catalyst thin film thickness, and increased to a range of 190-200 nm with 100 nm catalyst thin film thickness.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0080026

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Controlling the diameter of silicon nanowires grown using a tin catalyst</title>
<author>
<name sortKey="Al Taay, H F" uniqKey="Al Taay H">H. F. Al-Taay</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Engineering & Energy, Murdoch University, South Street</s1>
<s2>Murdoch, WA 6150</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Murdoch, WA 6150</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Physics, College of Sciences for Women, University of Baghdad</s1>
<s2>Baghdad</s2>
<s3>IRQ</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Iraq</country>
<wicri:noRegion>Baghdad</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mahdi, M A" uniqKey="Mahdi M">M. A. Mahdi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>Nano-Optoelectronics Research and Technology Laboratory (N.O.R.), School of Physics, Universiti Sains Malaysia</s1>
<s2>11800 Penang</s2>
<s3>MYS</s3>
<sZ>2 aut.</sZ>
</inist:fA14>
<country>Malaisie</country>
<wicri:noRegion>11800 Penang</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Parlevliet, D" uniqKey="Parlevliet D">D. Parlevliet</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Engineering & Energy, Murdoch University, South Street</s1>
<s2>Murdoch, WA 6150</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Murdoch, WA 6150</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jennings, P" uniqKey="Jennings P">P. Jennings</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>School of Engineering & Energy, Murdoch University, South Street</s1>
<s2>Murdoch, WA 6150</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</inist:fA14>
<country>Australie</country>
<wicri:noRegion>Murdoch, WA 6150</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0080026</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0080026 INIST</idno>
<idno type="RBID">Pascal:13-0080026</idno>
<idno type="wicri:Area/Main/Corpus">001284</idno>
<idno type="wicri:Area/Main/Repository">001000</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1369-8001</idno>
<title level="j" type="abbreviated">Mater. sci. semicond. process.</title>
<title level="j" type="main">Materials science in semiconductor processing</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Catalysts</term>
<term>Coated material</term>
<term>Coatings</term>
<term>Doped materials</term>
<term>Glass</term>
<term>Homogeneity</term>
<term>Indium oxide</term>
<term>Microelectronic fabrication</term>
<term>Microstructure</term>
<term>Morphology</term>
<term>Nanowires</term>
<term>PECVD</term>
<term>Scanning transmission electron microscopy</term>
<term>Silicon</term>
<term>Thermal method</term>
<term>Thickness</term>
<term>Thin films</term>
<term>Tin additions</term>
<term>Vacuum evaporation</term>
<term>Wires</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Catalyseur</term>
<term>Addition étain</term>
<term>Revêtement</term>
<term>Méthode PECVD</term>
<term>Epaisseur</term>
<term>Méthode thermique</term>
<term>Evaporation sous vide</term>
<term>Microstructure</term>
<term>Morphologie</term>
<term>Microscopie électronique balayage transmission</term>
<term>Homogénéité</term>
<term>Silicium</term>
<term>Nanofil</term>
<term>Oxyde d'indium</term>
<term>Matériau revêtu</term>
<term>Verre</term>
<term>Couche mince</term>
<term>Fil</term>
<term>Matériau dopé</term>
<term>Fabrication microélectronique</term>
<term>8107V</term>
<term>8116H</term>
<term>8105K</term>
<term>6865</term>
<term>ITO</term>
<term>8540H</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Verre</term>
<term>Fil</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Silicon nanowires were grown on ITO-coated glass substrates via a pulsed plasma enhanced chemical vapor deposition method, using tin as a catalyst. The thin films of catalyst, with different thicknesses in the range 10-100 nm, were deposited on the substrates by a thermal evaporation method. The effect of the thickness of the thin film catalyst on the morphology of the silicon nanowires was investigated. The scanning/ transmission electron microscopy images showed that the wire diameter increased as the thickness of the thin film catalyst increased. The nanowires grown using a thin film thickness of 10 nm were inhomogeneous in diameter, whereas the other thicknesses led to an increase in the homogeneity of the diameters of the nanowires. The dominant wire diameter of the grown silicon nanowires ranged from 70 to 80 nm with 10 nm catalyst thin film thickness, and increased to a range of 190-200 nm with 100 nm catalyst thin film thickness.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1369-8001</s0>
</fA01>
<fA03 i2="1">
<s0>Mater. sci. semicond. process.</s0>
</fA03>
<fA05>
<s2>16</s2>
</fA05>
<fA06>
<s2>1</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>Controlling the diameter of silicon nanowires grown using a tin catalyst</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>AL-TAAY (H. F.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>MAHDI (M. A.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>PARLEVLIET (D.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>JENNINGS (P.)</s1>
</fA11>
<fA14 i1="01">
<s1>School of Engineering & Energy, Murdoch University, South Street</s1>
<s2>Murdoch, WA 6150</s2>
<s3>AUS</s3>
<sZ>1 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Physics, College of Sciences for Women, University of Baghdad</s1>
<s2>Baghdad</s2>
<s3>IRQ</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>Nano-Optoelectronics Research and Technology Laboratory (N.O.R.), School of Physics, Universiti Sains Malaysia</s1>
<s2>11800 Penang</s2>
<s3>MYS</s3>
<sZ>2 aut.</sZ>
</fA14>
<fA20>
<s1>15-22</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>2888A</s2>
<s5>354000182494260030</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>31 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0080026</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Materials science in semiconductor processing</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Silicon nanowires were grown on ITO-coated glass substrates via a pulsed plasma enhanced chemical vapor deposition method, using tin as a catalyst. The thin films of catalyst, with different thicknesses in the range 10-100 nm, were deposited on the substrates by a thermal evaporation method. The effect of the thickness of the thin film catalyst on the morphology of the silicon nanowires was investigated. The scanning/ transmission electron microscopy images showed that the wire diameter increased as the thickness of the thin film catalyst increased. The nanowires grown using a thin film thickness of 10 nm were inhomogeneous in diameter, whereas the other thicknesses led to an increase in the homogeneity of the diameters of the nanowires. The dominant wire diameter of the grown silicon nanowires ranged from 70 to 80 nm with 10 nm catalyst thin film thickness, and increased to a range of 190-200 nm with 100 nm catalyst thin film thickness.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A07V</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D11C06</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B80A15G</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A16H</s0>
</fC02>
<fC02 i1="05" i2="X">
<s0>240</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Catalyseur</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Catalysts</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Addition étain</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Tin additions</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Revêtement</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Coatings</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Méthode PECVD</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>PECVD</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Epaisseur</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Thickness</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Méthode thermique</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Thermal method</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Método térmico</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Evaporation sous vide</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Vacuum evaporation</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Microstructure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Microstructure</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Morphologie</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Morphology</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Microscopie électronique balayage transmission</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Scanning transmission electron microscopy</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="3" l="FRE">
<s0>Homogénéité</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="3" l="ENG">
<s0>Homogeneity</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Silicium</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Silicon</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Nanofil</s0>
<s5>23</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Nanowires</s0>
<s5>23</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="GER">
<s0>Indiumoxid</s0>
<s5>24</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>24</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Matériau revêtu</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Coated material</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="GER">
<s0>Beschichteter Werkstoff</s0>
<s5>25</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Material revestido</s0>
<s5>25</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Verre</s0>
<s5>26</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Glass</s0>
<s5>26</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Couche mince</s0>
<s5>27</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Thin films</s0>
<s5>27</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Fil</s0>
<s5>28</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Wires</s0>
<s5>28</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Matériau dopé</s0>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Doped materials</s0>
<s5>46</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Fabrication microélectronique</s0>
<s5>47</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Microelectronic fabrication</s0>
<s5>47</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Fabricación microeléctrica</s0>
<s5>47</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>8107V</s0>
<s4>INC</s4>
<s5>56</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>8116H</s0>
<s4>INC</s4>
<s5>57</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8105K</s0>
<s4>INC</s4>
<s5>58</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>6865</s0>
<s4>INC</s4>
<s5>59</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8540H</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fN21>
<s1>049</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001000 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001000 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0080026
   |texte=   Controlling the diameter of silicon nanowires grown using a tin catalyst
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024